(é’ S R
(()) {C][—“ IL lt '1:9:i;llrel_;:f*l{‘lln:ujlccz'f:r

Wireless MAC layer
Reconfigurability
from an SDN perspective

Giuseppe Bianchi, University of Roma Tor Vergata

Credits to: I. Tinnirello, P. Gallo, D. Garlisi, F. Giuliano, F. Gringoli

EEEEEEEEEEEEEEEEEE
RRRRRRRRR

Giuseppe Bianchi

Software-Defined Radio
from wikipedia

=> A software-defined radio system, or SDR, is a radio
communication system where components that have
been typically implemented in hardware (e.g. mixers,
filters, amplifiers, modulators/demodulators, detectors,
etc.) are instead implemented by means of software
on a personal computer or embedded system.

=20+ years long research path

= AirBlue, CalRadio, GNURadio, RUNIC, SORA,
USRP, WARP, ...

=>Niche commercial exploitation
= Military, etc

Giuseppe Bianchi

Software-Defined Networking
from wikipedia

=>» Software defined networking (SDN) is an approach to
building computer networks that separates and
abstracts elements of these systems [...] SDN allows
network administrators to have programmable central
control of network traffic without requiring physical access
to the network's hardware devices.

=> 5 years long research path
= Pioneered by 2008 OpenFlow paper

= almost 2B$ company acquisitions in 2012
= Mainly Nicira, but also Contrail, Big Switch, Cariden, Vyatta, ...

Giuseppe Bianchi

Why SDN == $$$

Net «app»

Controller Net «app»

Packet Packetc
Forwarding Forwarding

=> Business: provisioning and control of network
services

= Fostering easy deployment = fast innovation

Net «app»

. Data plane

Packet
Forwarding

=> Technical enabler: open configuration APIs
= e.g. OpenFlow
= put SDN is NOT (just) OpenFlow

Giuseppe Bianchi

SDN: it’s all about abstractions

So far mostly dealt with in wired networks

Q)
Node behavior

Description

(formal) Network

Entity
e.g. Switch

Giuseppe Bianchi

OpenFlow: a compromise
[original quotes: from OF 2008 paper]

=> Best approach: “persuade commercial name-brand
equipment vendors to provide an open, programmable,
virtualized platform on their switches and routers”

= Plainly speaking: open the box!! No way...

=> Viable approach: “compromise on generality and seek
a degree of switch flexibility that is

= High performance and low cost

= Capable of supporting a broad range of research

= Consistent with vendors’ need for closed
platforms.

A successful compromise, indeed... ask Nicira ...

Giuseppe Bianchi

OpenFlow: just one abstraction
good for switches, not for «all»

Matching .
Rule Action

i 1. FORWARD TO PORT

2. ENCAPSULATE&FORWARD
: 3. DROP

: Extensible

Switch) MAC | MAC | Eth | VLAN| 1IP IP IP TCP | TCP
Port src dst | type ID Src Dst | Prot | sport | dport

Giuseppe Bianchi

What about SDN in wireless?

=>Wireless Openflow...
=Wireless specific actions: very helpful...

= ... but match/action API way too skinny
—>We all agree now: SDN >> OpenFlow

=>Challenge: which programming
abstractions for wireless
terminals and nodes?

= Without requiring to «open the box»

Giuseppe Bianchi

Beneficial to multiple scenarios

= Dynamic spectrum access

= Cognitive

= Performance optimization in niche
environments

—->home, industrial, ...
-> Adaptation to specific context or applications

=2 Improved support for new PHY

=»Virtualization and access network
sharing

=>And many more...

Giuseppe Bianchi

A basic (but compelling) use case:
multi-tenant WLAN sharing

UOperatorA W UOperator B)
¥ L

il O o
COTS virtualization (e.g. multiple SSID) OK for AAA, etc

Resource sharing and isolation requires much more _
.~ T—— ~ v (3
. . _. Lj

Virtual Operators over shared WLAN instractructure
e.g., airport, hotel, enterprise, etc

Giuseppe Bianchi

Well, we might «<hack» this

@)

Operator A Operator B

< Send suitable 802.11e parameters in OP, Beacon
... must be carefully chosen to coexist with OPg

< Configure via 802.11v params

< Custom operator’s protocol
... If further differentiation among terminals needed

Giuseppe Bianchi

The point is another

= All-in-one MAC protocol, e.g. 802.11

=\We can probably stretch it to fit our context
—> Creative parameter configs, overlay tricks, ...

—>We are good at mastering complexity
» and brings to accepted papers

=\When impossible? Just promote an amendment!

= But what if... we could change the MAC
protocol for each and every context?

= And we could trivially program our MAC operation?
=Much simpler!
=No anymore amendments, unless HW changes

Giuseppe Bianchi

Vision: Software-Defined MAC...

OperatorAT UOperatorB)
e

Change of context conditions >

Whole MAC protocol stack as a sort of JAVA applet

Giuseppe Bianchi

... but...

=> Best approach: “persuade commercial name-brand
equipment vendors to provide an open programmable
platform on their Wireless NICs”

= Plainly speaking: /et me hack your NIC!! No way...

=> Viable approach: “compromise on generality and seek
a degree of Wireless NIC flexibility that is

= High performance and low cost
= Capable of supporting a broad range of research

= Consistent with vendors’ need for closed
platforms.

Compromise in Wireless MAC cannot be just a
rule-action table!

Giuseppe Bianchi

Current SW coding is wrong answer

[even assuming Boxes are opened]

MAC SAP O

MAC Data MAC Manag.
service service

AL/

FULL-MAC
MPDU
Generation
Upper
MAC
SOFT-MAC
I S - I

Protocol -

Control

() ()

Lower MAC

AN

Vv Vv
PHY SAP TX MLME-PLME SAP PHY SAP RX

A\ MLME SAP

PHY

‘> DSP/FPGA SDR boards

= Cost, performance: just for research

= «openx» box approach: must convince
vendors

= Open firmware

= Probably only openFWWF, sneaked
out...

= not “much” (?!) vendor support

=» BUT in both cases...

= Huge skills/experience, low level
languages, inter-module dependencies
- Assembly, VHDL, low level C, ...

= Complexity! Slow deployment time

Giuseppe Bianchi

Right answer

=>Find the right abstractions!
=Must yield simple programming models
= Must not impair performance
= Sufficient flexibility to support most customization needs
=>Must be «vendor-friendly» ©

= Our own attempt at this:

= Wireless MAC processor: Computing environment and abstractions for
programming MAC protocols

= MAClets: from offline programming to online, dynamic, MAC stack
Injection and ultra fast reconfiguration, << 1 micro second

Giuseppe Bianchi

Learn from computing systems?

= 1: Instruction sets
perform elementary tasks on the platform
—> A-priori given by the platform

—> Can be VERY rich in special purpose computing platforms
» Crypto accelerators, GPUs, DSPs, etc

= 2: Programming languages
sequence of such instructions + conditions

= Convey desired platform’s operation or algorithm

=> 3: Central Processing Unit (CPU)
execute program over the platform

= Unaware of what the program specifically does
= Fetch/invoke instructions, update registers, etc

Clear decoupling between:

- platform’s vendor -=> implements (closed source!) instruction set & CPU
- programmer => produces SW code in given language

Giuseppe Bianchi

Learn from computing systems?

= 1: Instruction sets
perform elementary t

—> A-priori given by the
—>Can be VERY rich j

» Crvnto accelerat

\n the platform

\ose computing platforms
\C

= 2: Pros
sequence ¥

= Convey desired}

= 3: Central Pr

Clear decoupling between:

- platform’s vendor -> implements (closed source!) instruction set & CPU
- programmer -> produces SW code in given language

Giuseppe Bianchi

1: Which elementary MAC tasks?

(“our” instruction set!)

= ACTIONS

= frame management, radio control, time scheduling

—->TX frame, set PHY params, RX frame,
set timer, freeze counter, build header,
forge frame, switch channel, etc

= EVENTS

= available HW/SW signals/interrupts

—>Busy channel signal, RX indication,
Inqueued frame, end timer, etc

= CONDITIONS

= boolean/arithmetic tests on available registers/info

—> Frame address == X, queue length >0,
ACK received, power level <P, etc

Giuseppe Bianchi

Actually implemented API

Platform: Broadcom Airforce54g commodity card

events actions conditions
CH_UP set/get(reg, value) dstaddr
CH_DOWN switch RX() myaddr
RCV_ACK x_ ACK() queue_length
RCV_DATA x_beacon() queue_type
RCV_PLCP tx_datal() CW
RCV_RTS x_RTS() cwmin
RCV_CTS tx_CTS() Cwmax
RCYV_BEACON switch_ TX() backoff
HEADER END set_timer(value) RTS thr
COLLISION set_bk() ACK_on

MED DATA CONF freeze bk() srcaddr

MED DATA START update_retry() frame_type
MED_DATA_END more_frag() fragment
QUEUE_OUT_UP prepare_header() channel
QUEUE_IN_OVER tx_power
END_TIMER

Giuseppe Bianchi

Actually implemented API

Platform: Broadcom Airforce54g commodity card

events actions conditions
CH_UP set/get(reg, value) dstaddr
CH NDOWN switch RX{() mvaddr

Just “one” possible API

convenient on our commaodity platform

“others” possible as well

Improved/extended
tailored to more capable radio HW

Our point:
have a specified Set of actions/events/conditions,
not “which” specific one)

Giuseppe Bianchi

2: How to compose MAC tasks?

(“our” programming language!)

= Convenient “language”: XFSM
eXtended Finite State Machines

= Compact way for composing available acts/ev/cond
to form a custom MAC protocol logic

Origin
state

EVENT
(condition)

Action()

Destination

state

config action()

~

J

Destination

state

~N

J

Destination

state

~N

AFSM tormal notation

meaning

J

Giuseppe Bianchi

5 | symbolic states MAC protocol states

[| input symbols Events

U | output symbols MAC actions

[} | n-dimensional all possible settings of n
linear space configuration registers
D =---x Dy

F | set of enabling func- Conditions to be wveri-
tions f; : [— fied on the configuration
{0, 1} registers

U | set of update func- Configuration COIM-
tions u; : [— [} mands, update regis-

ters’ content
T | transition relation Target state, actions

' : 8SxFxl &
SxUx0

and configuration com-
mands associated to
each transition

XFSM example: legacy DCF

simplified for graphical convenience

MED_DATA_CONF
WAIT_ACK Switch_RX
set_tmerfACK_ TIMEOLUT)

EMD_TIMER

RCY_OTHER

END TIMER

[oacikoft
set_backofm))

BACKOFF

END_TIMER
[BaCAT &=]
reswme_backod)

WAIT_NFS_BK

END_BK
[I:|lI-E'LIE' — EI'I"FITH

CH_UP
freeze_bi{)

CH_DOWN

QUEUE_OUT_UP
[Medium == busy]

WAIT_MED CH_UP

END_TIMER
switch_TX])
TX_stan)

QUEUE_DUT_UP
[medium = busy]
set_fmenDFS)

stop_fimer()

WAIT_DIFS_NO_B

Actions:

set_timer, stop_timer,
set_backoff,
resume_backoff,
update_cw,
switch_TX, TX start

Events:

END TIMER,
QUEUE_OUT_UP,
CH_DOWN, CH_UP,
END_BK,
MED_DATA_CONF

Conditions:
medium, backoff,
queue

Giuseppe Bianchi

3: How to run a MAC program?
(MAC engine — XFSM onboard executor - our CPU!)

> MAC engine: specialized XFSM
executor (unaware of MAC logic)
= Fetch state
= Recelve events
= Verify conditions
= Perform actions and state transition

= Once-for-all “vendor”’-implemented
in NIC (no need for open source)

=“close” to radio resources = straightforward real-
time handling

Giuseppe Bianchi

MAC Programs

G
N

= MAC description:
= XFSM

=2 XFSM - tables

B C
A T(A,B)
B T(B,C)
C |711cA |71(CB)

= Transitions

= «pyte»-code event, condition, action

—=>Portable over different vendors’
devices, as long as API is the same!!

= Pack & optimize in WMP «machine-

language» bytecode

Giuseppe Bianchi

A [T(AB)

B | 7(B,Q)

MAC protocol specification:

XFSM design
(e.g. Eclipse GMF)

7

Machine-readable code

Custom language compiler

Code injection
in radio HW platform

MAC Bytecode

MAC Engine

C [T(CA)

T(C,B)

Machine Language Example
(DCF, 544 bytes)

Memory Memory Description
AddreSS e -ee-nu.....Initial State Descriptor_
0x0BCO: ! 0100 FFFF 0B0O 0014 ASFF 6ADA 0014 ASFF!
0x0BDO: 1 6ADA 6C00 80A4 FFOO FF0O 3600 80EE FFO00.
0x0BEO: | 0000 0000 0000 0000 0000 0000 0000 00003

00 01 02 ‘ Coded state machine
0x0C00: * 0100 0100 0100 0401,0108 0508 1COL O10B:
0x0C10: ! 010B 3001 010D 0200 KFFF 5101 010E 030D, }
0x0C20: + 0000 0100 010F €100 0102 0602 EL00 0106} g Lo oo vy
0x0C30: } 0106 0401 0108 0508 1CB1 010B 030B FFFFr o & F =0
0x0C40: * CDOO 0104 OEOC 0000 0108 0DOO FFFF OE01, o, .” Tco w00 o
0%0C50: + 0109 0909 1CO1 010B ODOBFFFF C700 0103 ;.07 1105|0108 = trane. 2
0%0C60: } 0C03 E100 0106 0106 FFFF 6601 0110 1600+ 3007 700500 = trane . 3
0x0C70: * 0000 0100 0100 FFFF OEO1 0309 0109 1C01} o _ delimiter
0x0C80: y 010B 010B FFFF 5F01 010F 0A0QO 0000 0100¢
0x0C90: ' 0DO0 FFFF C100 0102 0A02 C700, 0103 0BO3; o
0x0CAO: 1 E100 0106 0D0O6 FFFF D300 0105 ‘D05 E100! Tramsition 1
0%0CBO: j 0106 0D06 FFFF D300 0105 0705 E100 01061 0401 = event pointer
0x0CCO: ' 0106 FFFF 6D0O1 0111 1800 0000 0100 0100, 01 = event parameter
0x0CDO: 1 0000 0100 0D10 7401 0112 1512 0009 oloo' 08 = event index
0X0CEO: ' 1111 9601 0113 0513 0000 0100 050050000 05 = target state
0x0CF0: ' 0100 0304 E100 0106 1206 0401 0108 0508, 08 = action
0x0D00: 1+ 1C01 010B 120B FFFF A901 0115 0100 B401!
0%0D10: } 0117 1200 0000 0100 0100 0000 0100 12141
0x0D20: * B901 0118 0310 0000 0100 0300 0401 0108
0x0D30: 4 1708 1501 010A 010A 1CO1 010B 010B C501% State 01
0x0D40: ! 0119 0800 0000 0100 0500 3001 010D 02001% 03 = transitions offset (9 bits)
0x0D50: 1 0401 0108 0508 1COLl 010B 180B CBOL 011A} £ _ EEEE delimiter
0x0D60: § 0200 0000 0100 0100 0000 0000 0000 0000¢
0x0D70: * 0000 0000 0000 0000 0000 0000 0000 0000,
0x0D80: + 0000 0000 0000 0000 0000 0000 0000 0000}

» 00 01
0x0D90: 1 00F0 O03FE
1

0x0DAO: 1 0000 _0000_0000_ 0000 0000 _0000_00Q0

Giuseppe Bianchi

Wireless MAC Processor:;
Overall architecture

/l\ MAC SAP MLME SAP 4\

XFSMSAP

v

Upper MAC A

v

LowerMAC SAP

XFSM Builder

XFSMAPI T

m

Wireless Processor

Micro-Instruction
Memory

A 4 q/
m&-_—
N Vv N
PHY SAP TX MLME-PLME SAP PHY SAPRX

Giuseppe Bianchi

= MAC Engine: XFSM executor

= Memory blocks: data, prog

= Registers: save system state
(conditions);

= Interrupts block passing HW
signals to Engine (events);

= Operations invoked by the
engine for driving the
hardware (actions)

From MAC Programs to MAClets
= Upload MAC program on NIC from remote

=While another MAC is running

= Embed code In ordinary packets

= WMP Control
Primitives
= load(XFSM)
= run(XFSM)
= verify(XFSM)

= switch(XFSM1, XFSM2,
ev, cond)

= Further primitives

= Synchro support for
distributed start of same
MAC operation

= Distribution protocol

load()
———————— MAClet
MAClet MAClet : Controller
repository Manager m = = T hrunfi) I
A : I High-level logic
DATA SAP () N 2 ¢ 1 TLXFSM SAP
\‘I-—-—._.—--""""r T
Registers | ¥
Ny : -H 1(2) Incoming bytecode
ata Memory XFSM o
|) BIOS _.\
| engine H (1) Running bytecode
Interrupts | verify(i) | |(0)
| bootstrap(i)| = | Micro-Instruction Memory
; I
Operations | Wireless MAC Processor
|
I
Reception Transmission | i
— Platform

_.—--"-".Fl

“Blos” state machine: DEFAULT protocol (e.g. wifi) which all terminals understand

Giuseppe Bianchi

From theory to practice

=> Obviously, instruction set and MAC Engine can be
“easily” implemented in a software-defined radio...

= e.g., FPGA, WARP, ...

=> But... can this be done on commodity HW?
= e.g., ultra-cheap ordinary WLAN NIC

= Yes!!!
= Reference platform: broadcom Airforce54g 4311/4318
—>Hands-on experience on card’s assembly language FW

—>general purpose processor (88 MHz), 64 registers,
4KB data memory, 32 KB code memory

= Partly leveraging existing card HW facilities
—->HW configuration registers for radio resource and event handling
—> Frequency, power, channel sensing, frame forging facilities, etc

- Available HW events (packet queued, plcp end, rx end, rx correct
frame, crc failure, timer expiration, carrier sense, etc)

Giuseppe Bianchi

Implementation at a glance

=» Delete 802.11 firmware

= Both Broadcom and openFWWF
we do NOT want yet another firmware MAC to hack!

= Replace it with /once for all developed]:

= Implementation of actions, events, conditions
—>1n part reusing existing HW facilities

= MAC engine: XFSM executor
= Develop “machine language” for MAC engine

= Custom made “bytecode” specified and implemented
—>6 bytes instructions, state transition table (sparseness exploited)

=> Address several annoying technical hurdles
= NO direct HW interrupts control available in Broadcom
= State and state transition optimizations, ...

Giuseppe Bianchi

Public-domain

= Supported by the FLAVIA EU FP7 project

= hitp:/www.ict-flavia.eul (@)
-> general coordinator: giuseppe.bianchi@uniroma2.it
-> Technical coordinator: ilenia.tinnirello@tti.unipa.it

= Public domain release in alpha version
= https://github.com/ict-flavia/Wireless-MAC-Processor.qit

= Developer team:
- ilenia.tinnirello@tti.unipa.it
- domenico.garlisi@dieet.unipa.it
- fabrizio.giuliano@dieet.unipa.it
- francesco.gringoli@ing.unibs.it

= Released distribution:
= Binary image for WMP

= You DO NOT need it open source! SEVENTH FRAMEWORK
Remember the “hard-coded” device philosophy... PROGRAMME

-> Conveniently mounted and run on Linksis or Alix
= Source code for everything else
= Manual & documentation, sample programs

Giuseppe Bianchi

http://www.ict-flavia.eu/
mailto:giuseppe.bianchi@uniroma2.it
mailto:ilenia.tinnirello@tti.unipa.it
https://github.com/ict-flavia/Wireless-MAC-Processor.git
mailto:ilenia.tinnirello@tti.unipa.it
mailto:domenico.garlisi@dieet.unipa.it
mailto:fabrizio.giuliano@dieet.unipa.it
mailto:francesco.gringoli@ing.unibs.it

WMP Functional validation
«static» MAC programs

Success IF WMP permits very easy/fast Lower MAC modifications or re-design
(vs months or hands-on experience with openFWWF/assembly

= “scientifically trivial” use cases, tackling distinct MAC
aspects recurring in literature proposals

= Piggybacked ACK
—> Programmable management of frame replies

= Pseudo-TDMA
—> Precise scheduling of the medium access times

= Randomized multi-channel access
—> Fine-grained radio channels control

= Multi-tenant access network sharing, with different protocols
-> virtualization

= Development time: O(days)
= Including bug fixing in engine/API, otherwise hours

Giuseppe Bianchi

Piggybacked ACK

If available, send TCP ACK instead of MAC ACK, otherwise send normal ACK

backotf
T—

DIFs | |
TCP_DATA "
| L]

| | TCP_DATA
| L

i
=
(!
e —

DIF=
ACK]

ACK

Channel activity trace

I I F T T T

ACKE DATH

—‘.g——s—r.z

@
=
1

DATA

5TAl

i A ..

1
=
|_i

I

1000 1500 2000 2500 3000 3500
Time [ps]

PiggyBack (Mb/s)
k=) 1) - o

—

=]

0 1

.......Datarate. @

11 Mbps

2 3 4
Legacy (Mb/s)

2 6

Giuseppe Bianchi

Pseudo-TDMA

[literature proposal]
ffter first random access, schedule next transmissions at fixed temporal intervals

rnd access

| 1 | |
! 1 | |
DIFS ¥ PIFs 1 I I
pata |«)l CBR pata Il "5l cBr Il cer CBR Il cer CBR 1
1 : : : :
Pseudo-Frame | 1 | I
[I [I
Data rate @ 11 Mbps Pseudo-frame = 1.536 ms
-60- Ack € > i .
-t sTA0 (reveiver for both)
E' -70r DATA | |]
a m PN —— sTA1 (500B payload)
O, m ” “ sTA2 (100B payload)
n -80r 1
V)]
o
-90r i
m “ W “ IDLE

10070500 2000 3000 4000 5000

Time [us]

Gluseppe Blanchi

Randomized multichannel access

Per EACH frame, randomly select backoff AND channel (switch on as little as per frame basis)

CH1 busy DIFS =N | | DATA D”:Sx busy | | | |
‘Tswitch ﬂswitch ﬂswitch
DIFS | | | ‘ DIFS | | DIFS
CHE DATA | > busy DATA > DATA e >
Channel activity trace Performance gain
' | A
N\rx@cht Rl
I
; TX@Ch? = o fyemr
E"’f’ - e ;| . "5
iy {m L g
o A4tk Y
-5 g . :
o . | | 4 = — STA1 chan1 : : :
\ = : : :
|i ‘ ‘ | | * | m | W) FE 2f---sTAtMC-CcOL| SR Data rate @
1 2 I'Miﬂ 5 5 T | STA1 MC=RND | | 18leps |
0 == STA2 chani """""""

0 10 20 30 40 50 60
Time [sec]

Giuseppe Bianchi

RSSI [dBm]

RSSI [dBm]

Multi-threaded MAC

Success IF seamless switch from one MAC program to another in negligible time

Result: less than 0.2 us over such cheap hardware!
(plus channel switching time if required)
MAClIet switching

|
MAClet 2

|
MAClet 1

Time [ms]
20 Channel Hopping MAClet Switching
- I T I I I
MACIet 1 : } MACIet 2 } MAClet 1

T) R DCFCH6 - TDMACH®& SR DCFCH6 .

i 1 e

200 250 300 350 400 450 500 550 600
Time [ms]

RSS| [dEm]

AP Virtualization with MAClets

I's on sam - i G |
T APjinfastroctare . S @ 9,
= A: wants TDM, fixed rate @ @
= B: wants best effort DCF Timer expiration
= Trivial with MAClets!
= Customers of A/B download ¢@
respective TDM/DCF MAClets!

=> Isolation via MAClet design
= Time slicing DESIGNED INTO the MAClets! (static or dynamic)

MAClet — Metwork Virtualization
T T T = A A=

Beacon reception & conversely

_ _ A _ _
3 S | 10 1 T x: 1 I
- -II-----------IL-----------:-------H-:-d- --H--:------- ---.Jlnnu--------ll------- --JI-----—
| ST SO WAL~ .. " I O | . LL M
' feini 3 ' T |m|.|_m|| :
.H,[I'....--...--E..---...-.\H-[-....-- e e e LRI :. I.|."...E...--_

it ra &0 g0 100

Time [ms]

Yok 1
130

An Example of

Throughput Performance
3 FIXED stations @ 0.63 Mbps vs. 5 BEST stations @ 1Mbps

Aggregate Throughput DCF vs TDM

' ' — T T !
ADDO OCF
TDM ; ; ' ; ; ;
E_ 3000 DCF v win
%‘ TDMDTNWIH
=
E; 2000 ‘m om '-"'-'---—-- F- '-".'-'"-' '-'".E"-"-'."-'"-' 'q"ﬁ"-"—"'-"'-'
- .
o I
L
= 1000 | - = = l'
0 i | i | i | | i i

30 60 S0 120 120 180 210 240 270 300
time [sec]

Giuseppe Bianchi

Conclusions

= New vision:

= MAC no more an all-size-fits-all protocol

= Can be made context-dependent

= Complex scenarios (e.g. virtualization) become trivial!
=> Very simple and viable model

= Byte-coded XFSM injection

= Does NOT require open source NICs!

=> Next steps

= We focused on the «act» phase; what about the decision and
cognitive plane using such new weapons?

= can we think to networks which «self-program» themselves?

—>Not too far, as it just suffices to generate and inject a state
machine...

Giuseppe Bianchi

	Diapositiva numero 1
	Software-Defined Radio�from wikipedia
	Software-Defined Networking�from wikipedia
	Why SDN == $$$
	SDN: it’s all about abstractions�So far mostly dealt with in wired networks
	OpenFlow: a compromise�[original quotes: from OF 2008 paper]
	OpenFlow: just one abstraction�good for switches, not for «all»
	What about SDN in wireless?
	Beneficial to multiple scenarios
	A basic (but compelling) use case: multi-tenant WLAN sharing
	Well, we might «hack» this
	The point is another
	Vision: Software-Defined MAC…
	… but…
	Current SW coding is wrong answer�[even assuming Boxes are opened]
	Right answer
	Learn from computing systems?
	Learn from computing systems?
	1: Which elementary MAC tasks?�(“our” instruction set!)
	Actually implemented API�Platform: Broadcom Airforce54g commodity card
	Actually implemented API�Platform: Broadcom Airforce54g commodity card
	Diapositiva numero 22
	Diapositiva numero 23
	Diapositiva numero 24
	MAC Programs
	Machine Language Example �(DCF, 544 bytes)
	Wireless MAC Processor: Overall architecture�
	From MAC Programs to MAClets
	From theory to practice
	Implementation at a glance
	Public-domain
	WMP Functional validation�«static» MAC programs
	Piggybacked ACK
	Pseudo-TDMA�[literature proposal]
	Randomized multichannel access
	Multi-threaded MAC
	AP Virtualization with MAClets
	An Example of �Throughput Performance�3 FIXED stations @ 0.63 Mbps vs. 5 BEST stations @ 1Mbps
	Conclusions

