
Giuseppe Bianchi

Wireless MAC layer
Reconfigurability

from an SDN perspective

Giuseppe Bianchi, University of Roma Tor Vergata

Credits to: I. Tinnirello, P. Gallo, D. Garlisi, F. Giuliano, F. Gringoli

Giuseppe Bianchi

Software-Defined Radio
from wikipedia

A software-defined radio system, or SDR, is a radio
communication system where components that have
been typically implemented in hardware (e.g. mixers,
filters, amplifiers, modulators/demodulators, detectors,
etc.) are instead implemented by means of software
on a personal computer or embedded system.

20+ years long research path
AirBlue, CalRadio, GNURadio, RUNIC, SORA,

USRP, WARP, …

Niche commercial exploitation
Military, etc

Giuseppe Bianchi

Software-Defined Networking
from wikipedia

Software defined networking (SDN) is an approach to
building computer networks that separates and
abstracts elements of these systems […] SDN allows
network administrators to have programmable central
control of network traffic without requiring physical access
to the network's hardware devices.

5 years long research path
Pioneered by 2008 OpenFlow paper

almost 2B$ company acquisitions in 2012
Mainly Nicira, but also Contrail, Big Switch, Cariden, Vyatta, …

Giuseppe Bianchi

Why SDN == $$$

Business: provisioning and control of network
services
Fostering easy deployment  fast innovation

Technical enabler: open configuration APIs
e.g. OpenFlow
but SDN is NOT (just) OpenFlow

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Common, standard-based, interface - API

Controller

Data plane

Net «app» Net «app» Net «app»

Giuseppe Bianchi

SDN: it’s all about abstractions
So far mostly dealt with in wired networks

Node behavior
Description

(formal) Network
Entity

e.g. Switch

Any vendor, any size, any HW/SW platform…

Giuseppe Bianchi

OpenFlow: a compromise
[original quotes: from OF 2008 paper]

Best approach: “persuade commercial name-brand
equipment vendors to provide an open, programmable,
virtualized platform on their switches and routers”
Plainly speaking: open the box!! No way…

Viable approach: “compromise on generality and seek

a degree of switch flexibility that is
High performance and low cost
Capable of supporting a broad range of research
Consistent with vendors’ need for closed

platforms.

A successful compromise, indeed… ask Nicira …

Giuseppe Bianchi

OpenFlow: just one abstraction
good for switches, not for «all»

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Matching
Rule Action

1. FORWARD TO PORT
2. ENCAPSULATE&FORWARD
3. DROP
4. …
Extensible

Giuseppe Bianchi

What about SDN in wireless?

Wireless Openflow…
Wireless specific actions: very helpful…
… but match/action API way too skinny
We all agree now: SDN >> OpenFlow

Challenge: which programming

abstractions for wireless
terminals and nodes?
Without requiring to «open the box»

Giuseppe Bianchi

Beneficial to multiple scenarios

Dynamic spectrum access
Cognitive
Performance optimization in niche

environments
home, industrial, …
Adaptation to specific context or applications

Improved support for new PHY
Virtualization and access network

sharing

And many more…

Giuseppe Bianchi

A basic (but compelling) use case:
multi-tenant WLAN sharing

Virtual Operators over shared WLAN instractructure
e.g., airport, hotel, enterprise, etc

Operator A Operator B

COTS virtualization (e.g. multiple SSID) OK for AAA, etc
Resource sharing and isolation requires much more

Giuseppe Bianchi

Well, we might «hack» this

Operator A Operator B

 Send suitable 802.11e parameters in OPA Beacon
 … must be carefully chosen to coexist with OPB

 Configure via 802.11v params

 Custom operator’s protocol
 … if further differentiation among terminals needed

Giuseppe Bianchi

The point is another
All-in-one MAC protocol, e.g. 802.11
We can probably stretch it to fit our context
Creative parameter configs, overlay tricks, …
We are good at mastering complexity

» and brings to accepted papers
When impossible? Just promote an amendment!

But what if… we could change the MAC
protocol for each and every context?
And we could trivially program our MAC operation?
Much simpler!
No anymore amendments, unless HW changes

Giuseppe Bianchi

Vision: Software-Defined MAC…

Operator A Operator B

Whole MAC protocol stack as a sort of JAVA applet

Change of context conditions

Giuseppe Bianchi

… but…
Best approach: “persuade commercial name-brand

equipment vendors to provide an open programmable
platform on their Wireless NICs”
Plainly speaking: let me hack your NIC!! No way…

Viable approach: “compromise on generality and seek

a degree of Wireless NIC flexibility that is
High performance and low cost
Capable of supporting a broad range of research
Consistent with vendors’ need for closed

platforms.

Compromise in Wireless MAC cannot be just a
rule-action table!

Giuseppe Bianchi

Current SW coding is wrong answer
[even assuming Boxes are opened]

FULL-MAC

SOFT-MAC

MAC SAP MLME SAP

MAC Data
service

MAC Manag.
service

MPDU
Generation

MLME

Protocol
Control

TX FSM RX FSM

PHY SAP TX PHY SAP RX MLME-PLME SAP

Upper
MAC

Lower MAC

PHY

 DSP/FPGA SDR boards
 Cost, performance: just for research
 «open» box approach: must convince

vendors

 Open firmware
 Probably only openFWWF, sneaked

out…
 not “much” (?!) vendor support

 BUT in both cases…
 Huge skills/experience, low level

languages, inter-module dependencies
 Assembly, VHDL, low level C, …

 Complexity! Slow deployment time

Giuseppe Bianchi

Right answer
Find the right abstractions!
Must yield simple programming models
Must not impair performance
Sufficient flexibility to support most customization needs
Must be «vendor-friendly» 

Our own attempt at this:
Wireless MAC processor: Computing environment and abstractions for

programming MAC protocols
MAClets: from offline programming to online, dynamic, MAC stack

injection and ultra fast reconfiguration, << 1 micro second

Giuseppe Bianchi

Learn from computing systems?

 1: Instruction sets
perform elementary tasks on the platform

A-priori given by the platform
Can be VERY rich in special purpose computing platforms

» Crypto accelerators, GPUs, DSPs, etc

 2: Programming languages
sequence of such instructions + conditions
 Convey desired platform’s operation or algorithm

 3: Central Processing Unit (CPU)
execute program over the platform
 Unaware of what the program specifically does
 Fetch/invoke instructions, update registers, etc

Clear decoupling between:
 - platform’s vendor  implements (closed source!) instruction set & CPU
 - programmer  produces SW code in given language

Giuseppe Bianchi

Learn from computing systems?

 1: Instruction sets
perform elementary tasks on the platform

A-priori given by the platform
Can be VERY rich in special purpose computing platforms

» Crypto accelerators, GPUs, DSPs, etc

 2: Programming languages
sequence of such instructions + conditions
 Convey desired platform’s operation or algorithm

 3: Central Processing Unit (CPU)
execute program over the platform
 Unaware of what the program specifically does
 Fetch/invoke instructions, update registers, etc

Clear decoupling between:
 - platform’s vendor  implements (closed source!) instruction set & CPU
 - programmer  produces SW code in given language

Let’s MIMIC all
this!

Giuseppe Bianchi

ACTIONS
 frame management, radio control, time scheduling

TX frame, set PHY params, RX frame,
set timer, freeze counter, build header,
forge frame, switch channel, etc

EVENTS
available HW/SW signals/interrupts

Busy channel signal, RX indication,
inqueued frame, end timer, etc

CONDITIONS
boolean/arithmetic tests on available registers/info

Frame address == X, queue length >0,
ACK received, power level < P, etc

1: Which elementary MAC tasks?
(“our” instruction set!)

Giuseppe Bianchi

Actually implemented API
Platform: Broadcom Airforce54g commodity card

Giuseppe Bianchi

Just “one” possible API
 convenient on our commodity platform

“others” possible as well
 improved/extended
 tailored to more capable radio HW

Our point:
 have a specified set of actions/events/conditions,
 not “which” specific one)

Actually implemented API
Platform: Broadcom Airforce54g commodity card

Giuseppe Bianchi

Convenient “language”: XFSM
eXtended Finite State Machines
Compact way for composing available acts/ev/cond

to form a custom MAC protocol logic

2: How to compose MAC tasks?
(“our” programming language!)

Origin
state Destination

state
config action()

Destination
state

EVENT
(condition)
Action()

Destination
state

Giuseppe Bianchi

Actions:
set_timer, stop_timer,
set_backoff,
resume_backoff,
update_cw,
switch_TX, TX_start

Events:
END_TIMER,
QUEUE_OUT_UP,
CH_DOWN, CH_UP,
END_BK,
MED_DATA_CONF

Conditions:
medium, backoff,
queue

XFSM example: legacy DCF
simplified for graphical convenience

Giuseppe Bianchi

MAC engine: specialized XFSM
executor (unaware of MAC logic)
Fetch state
Receive events
Verify conditions
Perform actions and state transition

Once-for-all “vendor”-implemented
in NIC (no need for open source)
“close” to radio resources = straightforward real-

time handling

3: How to run a MAC program?
(MAC engine – XFSM onboard executor - our CPU!)

Giuseppe Bianchi

MAC Programs
MAC description:
XFSM

XFSM  tables

Transitions
«byte»-code event, condition, action

Portable over different vendors’
devices, as long as API is the same!!

Pack & optimize in WMP «machine-
language» bytecode

A

C

B

T(A,B)
T(B,C)

T(C,A) T(C,B)

A
B
C

A B C

T(A,B)
T(B,C)
T(C,A) T(C,B)

A
B
C

MAC protocol specification:
XFSM design

(e.g. Eclipse GMF)

Machine-readable code

Custom language compiler

Code injection
in radio HW platform

MAC Engine

MAC Bytecode

Giuseppe Bianchi

Machine Language Example
(DCF, 544 bytes)

Giuseppe Bianchi

Wireless MAC Processor:
Overall architecture

 MAC Engine: XFSM executor

 Memory blocks: data, prog

 Registers: save system state
(conditions);

 Interrupts block passing HW
signals to Engine (events);

 Operations invoked by the
engine for driving the
hardware (actions)

Giuseppe Bianchi

From MAC Programs to MAClets
Upload MAC program on NIC from remote
While another MAC is running
Embed code in ordinary packets

WMP Control
Primitives
 load(XFSM)
 run(XFSM)
 verify(XFSM)
 switch(XFSM1, XFSM2,

ev, cond)
 Further primitives

 Synchro support for
distributed start of same
MAC operation

 Distribution protocol

 “Bios” state machine: DEFAULT protocol (e.g. wifi) which all terminals understand

Giuseppe Bianchi

From theory to practice
 Obviously, instruction set and MAC Engine can be

“easily” implemented in a software-defined radio…
 e.g., FPGA, WARP, …

 But… can this be done on commodity HW?

 e.g., ultra-cheap ordinary WLAN NIC

 Yes!!!
 Reference platform: broadcom Airforce54g 4311/4318

Hands-on experience on card’s assembly language FW
general purpose processor (88 MHz), 64 registers,

4KB data memory, 32 KB code memory
 Partly leveraging existing card HW facilities

HW configuration registers for radio resource and event handling
Frequency, power, channel sensing, frame forging facilities, etc
Available HW events (packet queued, plcp end, rx end, rx correct

frame, crc failure, timer expiration, carrier sense, etc)

Giuseppe Bianchi

Implementation at a glance
Delete 802.11 firmware
Both Broadcom and openFWWF

we do NOT want yet another firmware MAC to hack!
Replace it with [once for all developed]:
Implementation of actions, events, conditions

in part reusing existing HW facilities
MAC engine: XFSM executor

Develop “machine language” for MAC engine
Custom made “bytecode” specified and implemented

6 bytes instructions, state transition table (sparseness exploited)
Address several annoying technical hurdles
NO direct HW interrupts control available in Broadcom
State and state transition optimizations, …

Giuseppe Bianchi

Public-domain
 Supported by the FLAVIA EU FP7 project

 http://www.ict-flavia.eu/
 general coordinator: giuseppe.bianchi@uniroma2.it
 Technical coordinator: ilenia.tinnirello@tti.unipa.it

 Public domain release in alpha version

 https://github.com/ict-flavia/Wireless-MAC-Processor.git
 Developer team:

 ilenia.tinnirello@tti.unipa.it
 domenico.garlisi@dieet.unipa.it
 fabrizio.giuliano@dieet.unipa.it
 francesco.gringoli@ing.unibs.it

 Released distribution:

 Binary image for WMP
 You DO NOT need it open source!

Remember the “hard-coded” device philosophy…
 Conveniently mounted and run on Linksis or Alix

 Source code for everything else
 Manual & documentation, sample programs

http://www.ict-flavia.eu/
mailto:giuseppe.bianchi@uniroma2.it
mailto:ilenia.tinnirello@tti.unipa.it
https://github.com/ict-flavia/Wireless-MAC-Processor.git
mailto:ilenia.tinnirello@tti.unipa.it
mailto:domenico.garlisi@dieet.unipa.it
mailto:fabrizio.giuliano@dieet.unipa.it
mailto:francesco.gringoli@ing.unibs.it

Giuseppe Bianchi

WMP Functional validation
«static» MAC programs

 “scientifically trivial” use cases, tackling distinct MAC
aspects recurring in literature proposals
 Piggybacked ACK

 Programmable management of frame replies
 Pseudo-TDMA

 Precise scheduling of the medium access times
 Randomized multi-channel access

 Fine-grained radio channels control
 Multi-tenant access network sharing, with different protocols

 virtualization

 Development time: O(days)
 Including bug fixing in engine/API, otherwise hours

Success IF WMP permits very easy/fast Lower MAC modifications or re-design
(vs months or hands-on experience with openFWWF/assembly

Giuseppe Bianchi

Piggybacked ACK

If available, send TCP ACK instead of MAC ACK, otherwise send normal ACK

Channel activity trace Performance gain

Data rate @
11 Mbps

Giuseppe Bianchi

Pseudo-TDMA
[literature proposal]

After first random access, schedule next transmissions at fixed temporal intervals

Data rate @ 11 Mbps

(500B payload)
(100B payload)

(reveiver for both)

Pseudo-frame = 1.536 ms

Giuseppe Bianchi

Randomized multichannel access

Performance gain

Per EACH frame, randomly select backoff AND channel (switch on as little as per frame basis)

Data rate @
18 Mbps

Channel activity trace

TX@Ch1

TX@Ch2

Giuseppe Bianchi

Multi-threaded MAC
Success IF seamless switch from one MAC program to another in negligible time

Result: less than 0.2 us over such cheap hardware!
(plus channel switching time if required)

Giuseppe Bianchi

AP Virtualization with MAClets

 Two operators on same
AP/infrastructure
 A: wants TDM, fixed rate
 B: wants best effort DCF

 Trivial with MAClets!
 Customers of A/B download

respective TDM/DCF MAClets!
 Isolation via MAClet design

 Time slicing DESIGNED INTO the MAClets! (static or dynamic)

DCF SUSPEND

Timer expiration

Beacon reception & conversely

Giuseppe Bianchi

An Example of
Throughput Performance

3 FIXED stations @ 0.63 Mbps vs. 5 BEST stations @ 1Mbps

Giuseppe Bianchi

Conclusions
New vision:
MAC no more an all-size-fits-all protocol
Can be made context-dependent
Complex scenarios (e.g. virtualization) become trivial!

Very simple and viable model
Byte-coded XFSM injection
Does NOT require open source NICs!

Next steps
We focused on the «act» phase; what about the decision and

cognitive plane using such new weapons?
 can we think to networks which «self-program» themselves?

Not too far, as it just suffices to generate and inject a state
machine…

	Diapositiva numero 1
	Software-Defined Radio�from wikipedia
	Software-Defined Networking�from wikipedia
	Why SDN == $$$
	SDN: it’s all about abstractions�So far mostly dealt with in wired networks
	OpenFlow: a compromise�[original quotes: from OF 2008 paper]
	OpenFlow: just one abstraction�good for switches, not for «all»
	What about SDN in wireless?
	Beneficial to multiple scenarios
	A basic (but compelling) use case: multi-tenant WLAN sharing
	Well, we might «hack» this
	The point is another
	Vision: Software-Defined MAC…
	… but…
	Current SW coding is wrong answer�[even assuming Boxes are opened]
	Right answer
	Learn from computing systems?
	Learn from computing systems?
	1: Which elementary MAC tasks?�(“our” instruction set!)
	Actually implemented API�Platform: Broadcom Airforce54g commodity card
	Actually implemented API�Platform: Broadcom Airforce54g commodity card
	Diapositiva numero 22
	Diapositiva numero 23
	Diapositiva numero 24
	MAC Programs
	Machine Language Example �(DCF, 544 bytes)
	Wireless MAC Processor: Overall architecture�
	From MAC Programs to MAClets
	From theory to practice
	Implementation at a glance
	Public-domain
	WMP Functional validation�«static» MAC programs
	Piggybacked ACK
	Pseudo-TDMA�[literature proposal]
	Randomized multichannel access
	Multi-threaded MAC
	AP Virtualization with MAClets
	An Example of �Throughput Performance�3 FIXED stations @ 0.63 Mbps vs. 5 BEST stations @ 1Mbps
	Conclusions

